
SKCODER: A Sketch-based Approach for
Automatic Code Generation

Jia Li
Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

lijia@stu.pku.edu.cn

Yongmin Li
Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

liyongmin@pku.edu.cn

Ge Li*
Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

lige@pku.edu.cn

Zhi Jin*
Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

zhijin@pku.edu.cn

Yiyang Hao
aiXcoder

Beijing, China

haoyiyang@aixcoder.com

Xing Hu
Zhejiang University

Ningbo, China

xinghu@zju.edu.cn

Abstract—Recently, deep learning techniques have shown great
success in automatic code generation. Inspired by the code
reuse, some researchers propose copy-based approaches that can
copy the content from similar code snippets to obtain better
performance. Practically, human developers recognize the content
in the similar code that is relevant to their needs, which can be
viewed as a code sketch. The sketch is further edited to the desired
code. However, existing copy-based approaches ignore the code
sketches and tend to repeat the similar code without necessary
modifications, which leads to generating wrong results.

In this paper, we propose a sketch-based code generation
approach named SKCODER to mimic developers’ code reuse
behavior. Given a natural language requirement, SKCODER

retrieves a similar code snippet, extracts relevant parts as a
code sketch, and edits the sketch into the desired code. Our
motivations are that the extracted sketch provides a well-formed
pattern for telling models “how to write”. The post-editing
further adds requirement-specific details into the sketch and
outputs the complete code. We conduct experiments on two public
datasets and a new dataset collected by this work. We compare
our approach to 20 baselines using 5 widely used metrics.
Experimental results show that (1) SKCODER can generate more
correct programs, and outperforms the state-of-the-art – CodeT5-
base by 30.30%, 35.39%, and 29.62% on three datasets. (2) Our
approach is effective to multiple code generation models and
improves them by up to 120.1% in Pass@1. (3) We investigate
three plausible code sketches and discuss the importance of
sketches. (4) We manually evaluate the generated code and prove
the superiority of our SKCODER in three aspects.

Index Terms—Code Generation, Deep Learning

I. INTRODUCTION

As the complexity and scale of the software continue to

grow, developers cost lots of effort to write the source code

by hand. Code generation aims to automate this coding process

and generate the source code that satisfies a given natural lan-

guage requirement. Nowadays, deep learning (DL) techniques

have been successfully applied to automatic code generation

[1], [2], [3]. DL-based models take a natural language (NL)

* Corresponding authors

check if all elements in
list tmp are integer

all(_ for x in _)

all(isinstance(x, int) for x in tmp)

Fig. 1. The process of reusing the similar code by developers.

description as the input and output the corresponding source

code. The models are trained with a corpus of real NL-code

pairs. During the inference, trained models can automatically

generate the desired code for a new NL description.

Recently, inspired by the code reuse [4], some researchers

[5], [6], [7] introduce the information retrieval techniques into

code generation. They retrieve the similar code and provide it

as a supplement to code generation models. The models are

trained to copy some content from the similar code and obtain

a better performance. In this paper, we refer to these studies

as copy-based code generation models.

Practically, human developers often make necessary mod-

ifications in the similar code instead of simply copying,

during the code reuse process [8]. As shown in Figure 1,

developers search for a similar code snippet in open-source

communities (e.g., Stack Overflow [9]) and further analyze

the relevance of similar code to their requirements. Then,

developers recognize the parts (i.e., all(_ for x in _
)) that are relevant to their needs and ignore the irrelevant parts

2124

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00179

http://crossmark.crossref.org/dialog/?doi=10.1109%2FICSE48619.2023.00179&domain=pdf&date_stamp=2023-07-26

Input description:
count elements in a list

which are within a specific

range

def count_range(list1, min, max):
result = 0
for x in list1:

if min <= x <= max:
result = result+1

return result

Top-1 similar code: Code sketch: Final code:

retrieve sketch editdef count_integer(list1):
result = 0
for x in list1:

if isinstance(x, int):
result = result+1

return result

def _ (list1):
result = 0
for x in list1:

if _ :
result = result+1

return result

Fig. 2. The illustration of how developers reuse the similar code. The relevant content in the similar code is highlighted.

(i.e., x==myList[0] and myList). The relevant content

can be viewed as a code sketch, which specifies a viable

code pattern (e.g., API usage patterns [10], [11]) to guide

developers on how to write their code. Next, developers

understand the current requirement (i.e., check integer) and

edit the sketch into the desired code by adding some details

(i.e., isinstance(x,int)). In the above pipeline, code

sketches play a key role in the code reuse. The sketches denote

the knowledge that developers extract from the similar code,

and are further reused in the newly-written code. However,

previous copy-based models [5], [7] ignore the importance of

sketches. Experimental results show that copy-based models

tend to repeat the similar code without necessary modifications

and even copy the irrelevant content.

To mimic the above developers’ code reuse behavior,

we propose a novel sketch-based code generation approach,

named SKCODER. Different from simply copying in previous

copy-based approaches, SKCODER can identify the content

in similar code that is relevant to current requirements and

further modify those relevant content. Our motivations are

that code sketches denote the guidance from the similar code

that tells models “how to write”, and NL descriptions express

requirements that tell models “what to write”. Specifically,

SKCODER generates the source code in three steps:

• Retrieve. Given an NL description, we use a retriever to

choose a similar code snippet from a retrieval corpus.

• Sketch. Based on the NL description, we use a sketcher
to extract a code sketch from the similar code.

• Edit. We employ an editor to edit the sketch based on

the NL description and obtain the target code.

We conduct extensive experiments to evaluate our

SKCODER. (1) We evaluate SKCODER on two public datasets

[12], including HearthStone and Magic. We employ three

widely used evaluation metrics (exact match (EM), BLEU

[13], and CodeBLEU [14]). Results demonstrate the impres-

sive performance of our SKCODER. In terms of the EM,

SKCODER outperforms state-of-the-art (SOTA) baselines by

up to 22.41% and SOTA copy-based baselines by up to

42.86%. (2) We collect a new code generation dataset named

AixBench-L that consists of 200k real NL-code pairs. Each

test sample is equipped with a set of unit tests. We use

Pass@1 and AvgPassRatio to verify the correctness of the

generated code. Results show that SKCODER outperforms

SOTA baselines 12.9% in Pass@1 and 8.49% in AvgPassRatio.

(3) We conduct an ablation study of our approach on multiple

code generation models by gradually adding the retriever

and sketcher to these models. Results prove the contributions

of different modules and our SKCODER can substantially

improve different models by up to 120.1% in Pass@1. (4) We

investigate three plausible design choices for code sketches.

Results demonstrate the importance of the sketch and our

used sketch has a better performance. We also discuss the

importance of code sketches through real examples. (5) We

conduct a human evaluation to evaluate the generated code in

three aspects, including correctness, code quality, and main-

tainability. Results show that SKCODER outperforms baselines

in all three aspects.

We summarize our contributions in this paper as follows.

• To mimic developers’ code reuse behavior, we pro-

pose a sketch-based code generation approach named

SKCODER. It extracts a code sketch from the retrieved

similar code and further edits the sketch into the target

code based on the input description.

• We collect a new code generation dataset named

AixBench-L that consists of 200k real NL-code pairs.

Each test sample is equipped with a set of unit tests to

evaluate the correctness of functions.

• We conduct extensive experiments on three datasets.

Qualitative and quantitative analysis shows the effective-

ness of our SKCODER. We further investigate different

design choices of code sketches and discuss the impor-

tance of code sketches.

Data Availability. We open source our replication package

[15], including the datasets and the source code of SKCODER,

to facilitate other researchers and practitioners to repeat our

work and verify their studies.

II. MOTIVATING EXAMPLES

In Figure 2, we show an example to analyze how developers

reuse the similar code and explain our motivations.

(1) For an input requirement, the retrieved similar code
contains the relevant content and irrelevant parts. Given an

NL description, developers first retrieve a similar code snippet.

Figure 2 shows the Top-1 similar code snippet that is retrieved

based on the similarity of NL descriptions. Then, developers

understand the implementation details of the similar code

and determine which parts are relevant to their requirements.

We can see that the similar code contains lots of relevant

content (i.e., highlight in Figure 2), e.g., parameters (list1),

control flow statements (for x in list1:), and data flow

statements (result=result+1). Meanwhile, the similar

code also contains irrelevant parts, such as the if condition

statement (if instance(x,int):).

Thus, simply copying from the similar code is inappropriate,

which probably causes the generated code contains some irrel-

2125

Retrieval
corpus

Retriever

count elements
in a list which
are within a
specific range

NL description Similar
code snippets

Input description

count … def count_int (list1)

Similar code

: …

√ √ √ …√ √

def <pad> (list1):
result = 0
for x in list1:

if <pad> :
result = result+1

return result

Code sketch

count elements in a list which are within a specific range

NL description

def count_range(list1,min,max):
result = 0
for x in list1:

if min <= x <= max :
result = result+1

return result

Generated code

edit

guidance

(a) Retriever: Selecting the similar code

(b) Sketcher: Extracting a code sketch (c) Editor: Editing the sketch into the target code

soft template

result

√

=

√

Fig. 3. The overview of our approach.

evant parts. We show a wrong output of the SOTA copy-based

approach named REDCODER [7] in Figure 6. REDCODER

directly copies an incorrect statement from the similar code

without necessary modifications.

(2) We should extract the relevant content from the
similar code as a code sketch. Practically, developers will

recognize the relevant content from the similar code, ignoring

irrelevant parts. The relevant content can be viewed as a

code sketch, which specifies a code pattern to guide devel-

opers on how to write the source code. Figure 2 shows a

sketch extracted from the similar code. The token “_” is

a placeholder. We can see that the sketch provides a high-

level code structure for developers, i.e., initializing a counting

variable → iterating the list and counting → returning the

counting variable. Some details are replaced by placeholders

and elaborated by developers.

Thus, we argue that code sketches are the core of a code

reuse process, which denote the valuable knowledge from the

similar code and are further reused in the new code.

(3) The sketch needs to be edited based on the input
description to obtain the target code. Code sketches provide

code patterns that tell developers “how to write”, and the

NL descriptions express requirements that tell developers

“what to write”. Thus, developers will edit sketches based

on their requirements and obtain the final code. Figure 2

shows the final code. Developers understand requirements (i.e.,
counting elements within a specific range) from the input

description and fill in sketches with implementation details,

e.g., function name (count_range), if condition statements

(if min<=x<=max:).

Based on the above observations, we propose a sketch-based

code generation approach to mimic the developers’ code reuse

behavior. Different from previous copy-based code generation

models, our approach contains a sketcher module that can

extract the relevant content from the similar code and output

a code sketch. Then, we utilize an editor module to edit the

sketch into the target code. Through the above pipeline, our

approach effectively mines the knowledge from existing high-

quality code corpus and transfers the knowledge into newly-

written programs.

III. APPROACH

In this section, we present a sketch-based code generation

approach, named SKCODER. We formally define the overview

of our SKCODER and describe the details in the following

sections, including three modules and the training details.

A. Overview

The goal of code generation is to train a model G(Y |X) that

predicts a code snippet Y based on an input natural language

(NL) description X . In this work, we decompose this model

into three modules, including a retriever, a sketcher, and an

editor. The three modules work in a pipeline as shown in

Figure 3:

• Retrieve. Given an NL description X , a retriever selects

a similar code snippet Y ′ from a retrieval corpus.

• Sketch. Based on the NL description X , a sketcher

extracts a code sketch S from the similar code Y ′.
• Edit. An editor edits the sketch S into the target code Y

based on the NL description X .

B. Retriever

As shown in Figure 3 (a), the retriever aims to select

similar code snippets from a retrieval corpus based on the

input NL description. Inspired by previous studies [5], [6],

we think that similar code snippets are likely to have similar

NL descriptions. Therefore, we take the input description as a

query to search for similar descriptions in a retrieval corpus.

Then, the corresponding code of similar descriptions is viewed

as the similar code.

Specifically, we employ the BM25 score [16] as our retrieval

metric, which is widely used in previous studies [17], [18],

[19]. BM25 is a bag-of-words retrieval function to estimate

the lexical-level similarity of two sentences. The more similar

two sentences are, the higher the value of BM25 scores. We

leverage the open-source search engine Lucene [20] to build

our retriever and use the training set as our retrieval corpus.

2126

Our motivation is that BM25 and Lucene can bring a nice

retrieval accuracy and have low complexity. Considering that

the retrieval corpus is often large-scale, a fast retriever is closer

to practical applications. We also notice that there are some

more advanced code search approaches [21], [22], and they

can be applied to our approach in a plug-and-play fashion.

Because these approaches have higher complexity, we leave

them for further work.

C. Sketcher

The goal of our sketcher is to extract a code sketch from the

similar code based on the input description. In other words,

the sketcher should extract the content that is relevant to the

input description and ignore irrelevant parts. We consider this

procedure as a series of token-level classification actions. We

first split the similar code into a token sequence. Then, we

utilize a neural network to capture relations between the input

description and the similar code tokens. For more relevant

tokens, the neural network assigns higher weights. Based on

the outputs of the neural network, we further decide whether

each token in the similar code is extracted or ignored. The

ignored tokens are replaced by placeholders. Figure 3 (b)

shows the workflow of our sketcher.

Specifically, we concatenate the NL description X and the

similar code Y ′ into an input sequence and tokenize it. Then,

we use a neural encoder Encoder(·) to convert the input

sequence into vector representations [H;H ′].

X = (x1, x2, . . . , xn)

Y ′ = (y′1, y
′
2, . . . , y

′
m)

[H;H ′] = Encoder([X;Y ′])
(1)

where xi and y′i are the i-th token in the NL description and

the similar code; n and m are the maximum lengths of the

NL description and the similar code.

We further extract vector representations of the similar

code and feed them into a linear classification layer. The

classification layer will output a probability pi for each token

in the similar code. If the probability is greater than a threshold

t, the token is extracted; otherwise, it is replaced with a

placeholder (<pad>).

H ′ = (h′
1, h

′
2, . . . , h

′
m)

pi = softmax(Wsh
′
i + bs)

(2)

si =

{
y′
i if pi > t
<pad> otherwise

(3)

S = (s1, s2, . . . , sm) (4)

where h′
i denotes the vector representation of i-th token in

the similar code. Ws and bs are trainable parameters in the

classification layer. S is the predicted sketch and si is the i-th
token in the sketch. We further merge consecutive placeholders

in the sketch into one placeholder.

print script 's directory

print(os.path.dirname(os.path.realpath(__file__)))

return os.path.dirname(os.path.realpath(sys.argv[0]))

<pad> os.path.dirname(os.path.realpath(<pad>))

Fig. 4. An illustration of our sketch.

D. Editor

As shown in Figure 3 (c), our editor treats the sketch

as a soft template and generates the target code with the

guidance of the input description. The editor is trained to

follow code structures provided by the sketch and add details

to some placeholders (e.g., count_range, min<=x<=max).
The editor also can generate some necessary components that

are not in the sketch, e.g., additional parameters (min, max).
In this paper, we employ an encoder-decoder neural network

to implement our editor, which has been widely used in code

generation [1], [2], [7], [3]. Specifically, we concatenate the

NL description and the sketch into an input sequence. The

input sequence is transformed into vector representations by

an encoder, and a decoder generates the target code based on

vector representations.

E. Training and Testing

Our SKCODER contains three modules: retriever, sketcher,

and editor. We employ a deterministic retriever that does not

contain trainable parameters. Besides, considering that the

sketcher performs non-differentiable hard classifications, the

overall approach cannot be trained in an end-to-end fashion.

Thus, we employ a two-stage training strategy (i.e.,firstly

training the sketcher and then training the editor), which is

widely used in other fields like code completion [19] and code

summarization [18].

1) Training the sketcher: The sketcher takes an NL descrip-

tion X and a similar code snippet Y ′ as inputs and outputs

a code sketch S. But existing code generation datasets only

contain NL-code pairs (X,Y) without explicit sketches. Thus,

we propose an approach to construct sketches for facilitating

the training. We first pick a dataset and use our retriever to

make lots of triples (X,Y, Y ′). Then, we treat the longest

common subsequence (LCS) [23] between the similar codeY ′

and the target code Y as a code sketch S. Figure 4 shows an

illustration of our sketch. We can see that the LCS effectively

keeps reusable parts in the similar code (e.g., API and code

structures). In Section V, we experimentally investigate other

design choices of sketches and prove the superiority of our

used sketch.

Based on the above setting, we can build lots of training

triples (X,Y ′, S). Then, we train our sketcher by minimizing

the following loss function:

Ls = −
m∑

i=1

[Ii · log(pi) + (1− Ii) · log(1− pi)] (5)

2127

TABLE I
STATISTICS OF THE DATASETS IN OUR EXPERIMENTS.

Statistics Hearthstone Magic AixBench-L

Train 533 11,969 190,000
Dev 66 664 10,000
Test 66 664 175

Avg. tokens in description 27.92 59.54 27.55
Max. tokens in description 44 174 3752
Avg. tokens in code 87.14 302.44 170.74
Max. tokens in code 407 2395 25237

where pi is a predicted probability that i-th token of similar

code y′i is kept in the sketch S. Ii is an indicator function that

outputs 1 when y′i is in S and outputs 0 when y′i is not in S.

2) Training the editor: The inputs of our editor contain an

NL description X and a code sketch S, and the output is the

target code Y . We utilize a retriever to make triples (X,Y, Y ′)
and further use a trained sketcher to predict the code sketches,

obtaining lots of training triples (X,S, Y). We train our editor

by minimizing the following loss function:

Le = −
m∑

i=1

logP (yi|X,S, y<i) (6)

where yi denotes i-th token in the target code and y<i is the

part of the target code before yi.

3) Testing: After training the sketcher and editor, our

SKCODER can be applied to online inference. Given a new

NL description, we use a retriever to search for a similar code

snippet from a retrieval corpus. Then, our sketcher extracts a

code sketch from the similar code and our editor generates the

desired code snippet based on the sketch.

IV. STUDY DESIGN

To assess the effectiveness of our approach, we perform

a large-scale study to answer three research questions. In this

section, we describe the details of our study, including datasets,

metrics, and baselines.

A. Research Questions

Our study aims to answer three research questions (RQ). In

RQ1, we compare our SKCODER to SOTA code generation

models on three representative datasets. In RQ2, we conduct an

ablation study to prove the contributions of different modules.

In RQ3, we investigate different design choices of code

sketches and validate the effectiveness of our design.

RQ1: How does SKCODER perform compared to SOTA
baselines? We train our SKCODER with three representa-

tive datasets. Then, we use multiple metrics to evaluate the

SKCODER and compare it to existing SOTA code generation

baselines.

RQ2: What are the contributions of different modules in
our approach? Our SKCODER consists of three modules: a

retriever, a sketcher, and an editor. We assess the contributions

of different modules by gradually adding them to a base model.

We select multiple neural networks as the base models and aim

to verify that our approach is effective to different network

architectures.

RQ3: What is the better design choice of the sketcher?
In Section III-E, we treat the longest common subsequence

(LCS) as the code sketch. In this RQ, we provide other design

choices of the sketch and compare them to our design.

B. Datasets

We conduct experiments on two public datasets (i.e., Hearth-

Stone in Python and Magic in Java) collected by Ling et al.

[12] and a new Java dataset named AixBench-L collected by

this work.

HearthStone and Magic datasets are proposed for the

automatic code generation for cards in games. Each sample

is composed of a semi-structural description and a human-

written program. The description comes with several attributes

such as card name, and card type, as well as a natural language

description for the effect of the card. We follow previous work

[1], [2] to pre-process the two datasets, and the statistic is listed

in Table I.

AixBench-L is a function-level code generation benchmark

and is an augmented version of the public AixBench bench-

mark [24]. We treat the original AixBench as the test data

and collect lots of NL-code pairs from Github [25] as the

train and dev data. Specifically, we mined Java open-source

projects with at least 30 stars from GitHub, and avoid projects

containing test data. From mined projects, we remove auto-

generated functions and extract functions (i) having an English

docstring; (ii) having <1024 tokens and >1 lines. Finally, we

obtain 200k samples and randomly split them into train data

and valid data. The statistic is shown in Table I. Each test

sample contains a functionally independent and well-described

natural language description, a signature of the target function,

and a set of unit tests that verify the correctness of the function.

Following previous work [24], we take the natural language

description and the function signature as models’ inputs.

C. Metrics

On HearthStone and Magic datasets, we view human-

written programs as the ground-truth, and employ three widely

used metrics to evaluate the similarity of the generated code

and the ground-truth [1], [2], [3].

• Exact match (EM) is the percentage of the generated

code that has the same token sequence as the ground-

truth.

• The BLEU score [13] is used to measure the token-level

similarity between the generated code and the ground-

truth. Specifically, it calculates the n-gram similarity and

can be computed as:

BLEU = BP · exp
(

N∑
n=1

wn log pn

)
(7)

where pn is the n-gram matching precision scores, N is

set to 4 in our experiments. BP is a brevity penalty to

prevent very short generated code.

2128

• The CodeBLEU score [14] is a variant of the BLEU

score. It specializes in the source code and considers syn-

tactic and semantic matches based on the code structure

in addition to the n-gram match.

The test data in AixBench-L does not contain human-

written programs. We have to omit metrics (e.g., EM, BLEU)

requiring ground-truths. Following previous work [24], we use

unit tests to evaluate the correctness of generated programs.

Specifically, we employ the following metrics:

• Pass@1 is the percentage of the generated code that

passes all unit tests. It has been widely used in previous

studies [26], [27], [28].

• AvgPassRatio denotes the average test cases pass ratio

and can be calculated like this:

AvgPassRatio =
1

T

T∑

i

PassRatioi

PassRatioi =
Counti,pass

Counti,total

(8)

where Counti,pass and Counti,total are the number of

passed test cases and the total number of test cases in

i-th test sample, respectively. T is the size of test data.

D. Baselines

We select 20 recently proposed code generation models as

baselines. They can be divided into three categories: sequence-

based baselines, tree-based baselines, and pre-trained base-

lines.

The sequence-based baselines treat the source code as plain

text and directly generate a code token sequence:

• RNN [29] is a classic neural network in source code

processing. We utilize the RNN to implement a vanilla

encoder-decoder code generation model as the baseline.

• Transformer [30] is a popular encoder-decoder model

and has obtained promising results in code generation

and code completion tasks [19].

• LPN [12] and ReEdit [6] are RNN-based code generation

models. LPN proposes a structured attention mechanism

to handle the semi-structural inputs. ReEdit introduces a

retrieved similar program as an additional input.

The tree-based baselines directly generate a parsed tree (e.g.,
abstract syntax tree) of the source code. The generated tree is

further converted to the source code.

• Seq2Tree [31] is a pioneer tree-based work that proposes

a attention-enhanced code generation model.

• TRANX [1] is a representative tree-based code genera-

tion model that can map an NL description into a tree

using a series of tree construction actions.

• ASN [32] utilizes a dynamically-determined decoder to

efficiently generate a tree.

• TreeGen [2] incorporates grammar rules and tree struc-

tures into the Transformer. It significantly outperforms

previous RNN-based code generation models.

• ReCode [5] is a variant of the TRANX, which can copy

n-gram actions from the tree of a similar program.

The pre-trained baselines are first pre-trained with a large-

scale code corpus and then fine-tuned with code generation

datasets. Nowadays, pre-trained code generation models have

achieved SOTA results on many code generation datasets.

• CodeBERT [33] and GraphCodeBERT [34] are two

encoder-only pre-trained models. They mainly apply the

pre-training techniques for natural languages to the source

code. We add a six-layer transformer decoder along with

the two models, to support code generation.

• CodeGPT [35] and CodeParrot [27] are two decoder-

only pre-trained models. They are derived from the GPT-2

[36] and are continually pre-trained with the code.

• PyCodeGPT [26] and GPT-CC [28] are two decoder-

only pre-trained models. They are initialized with the

GPT-Neo [37] and are continually pre-trained with a

large-scale code corpus in Python.

• CERT-PyCodeGPT [26] is a variant of the PyCodeGPT.

It first predicts a sketch based on the NL description and

further generates the complete code based on the sketch.

• CodeGen [38] is a decoder-only pre-trained model. It

casts code generation as a multi-turn conversation be-

tween a user and a system.

• REDCODER [7] is a encoder-decoder pre-trained model.

It provides multiple similar code snippets as a supplement

to a pre-trained code generation model.

• CodeT5-small and CodeT5-base [3] are two encoder-

decoder pre-trained models. They propose an identifier-

aware pre-training task and have achieved SOTA results

on many code generation datasets.

E. Implementation Details

The implementation details of our SKCODER are as follows:

• Retriever. We use the open-source search engine -

Lucene [20] to build the retriever. The retrieval metric

is the BM25 score. For each dataset, the retrieval corpus

is its training data. Note that we exclude the ground truths

from the outputs of our retriever.

• Sketcher. We implement the sketcher with a 12-layer

Transformer encoder. Its network architecture follows

previous studies [33], [34]. We initialize the sketcher

using pre-trained weights of GraphCodeBERT [34].

• Editor. The editor is an encoder-decoder Transformer,

and the encoder and decoder both contain 12 Transformer

layers. The editor follows the network architecture in the

work [3] and is initialized with pre-trained weights of

CodeT5-base [3].

• Training & Testing. We train the SKCODER with two

NVIDIA A100 GPUs. The batch size is set to 32. During

training, we use Top-5 similar code snippets to build the

training data of our sketcher and editor. In the inference,

we only use the Top-1 similar code, employ the beam

search, and set the beam size to 10.

Note that initializing using pre-trained weights is common

in previous studies [34], [7], [26], [27], [28] and can effectively

improve the performance of models. To make a fair compari-

son, we also reuse the pre-trained weights in our experiments.

2129

TABLE II
RESULTS ON THE HEARTHSTONE DATASET (PYTHON). “*” REPRESENTS

THE COPY-BASED BASELINES.

Type Approach EM BLEU CodeBLEU

Retriever module 0 57.56 56.58

Sequence-based

LPN 6.10 67.10 –
RNN 3.03 64.53 58.56
Transformer 3.03 62.46 51.63
ReEdit * 9.10 70.00 –

Tree-based

Seq2Tree 1.50 53.40 –
TRANX 16.20 75.80 –
ASN 18.20 77.60 –
ReCode * 19.60 78.40 –
TreeGen 25.80 79.30 –

Pre-trained

CodeBERT 3.03 66.50 59.39
GraphCodeBERT 3.03 66.32 58.87
CodeGPT 15.15 80.90 66.69
GPT-CC 15.15 74.58 63.95
CodeParrot 19.70 76.99 65.40
PyCodeGPT 24.24 81.03 68.70
CERT-PyCodeGPT 16.67 78.91 67.73
CodeGen 24.24 78.80 67.43
REDCODER * 21.21 80.08 67.31
CodeT5-small 21.20 77.91 64.60
CodeT5-base 25.84 81.28 68.42
SKCODER 30.30 (↑ 17.26%) 83.12 (↑ 2.26%) 70.97 (↑ 3.73%)

TABLE III
RESULTS ON THE MAGIC DATASET (JAVA). WE OMIT SOME BASELINES AS

THEY CANNOT BE APPLIED TO THE JAVA LANGUAGE.

Type Approach EM BLEU CodeBLEU

Retriever module 0 53.64 64.23

Sequence-based
LPN 4.80 61.40 –
RNN 16.26 71.96 61.83
Transformer 12.20 73.10 66.61

Pre-trained

CodeBERT 19.42 78.69 71.73
GraphCodeBERT 27.41 82.33 74.76
CodeGPT 27.40 78.68 70.04
REDCODER * 9.79 58.81 50.38
CodeT5-small 26.95 78.38 71.11
CodeT5-base 28.91 80.46 73.11
SKCODER 35.39 (↑ 22.41%) 85.39 (↑ 6.13%) 82.42 (↑ 10.27%)

V. RESULTS AND ANALYSES

In our first research question, we evaluate the performance

of our SKCODER with respect to previous code generation

approaches.

RQ1: How does SKCODER perform compared to SOTA
baselines?

Setup. We evaluate baselines (Section IV-D) and our

SKCODER on three code generation datasets (Section IV-B).

The evaluation metrics are described in Section IV-C, i.e., the

EM, BLEU, CodeBLEU, Pass@1, and AvgPassRatio. For all

metrics, higher scores represent better performance.

Results. Table II, Table III and Table IV show the ex-

perimental results on three datasets, respectively. “–” denotes

that the models have not been evaluated using this metric,

to the best of our knowledge. “*” represents the copy-

based baselines, which also use the retrieved similar code.

The percentages in parentheses are the relative improvements

compared to the strongest baselines. On Magic and AixBench-

L datasets, we omit some baselines because they are designed

for specific languages and cannot work in the Java dataset.

Analyses. (1) Our SKCODER achieves the best results

among all baselines. Our SKCODER can generate more correct

programs. Compared to the SOTA model - CodeT5-base,

SKCODER outperforms it by up to 22.41% in EM and 29.62%

in Pass@1. Note that the EM and Pass@1 are very strict

TABLE IV
RESULTS ON THE AIXBENCH-L DATASET (JAVA). WE OMIT SOME

BASELINES AS THEY CANNOT BE APPLIED TO THE JAVA LANGUAGE.

Type Approach Pass@1 AvgPassRatio

Retriever module 2.86 7.93

Sequence-based
RNN 4.00 13.33
Transformer 6.29 12.43

Pre-trained

CodeBERT 9.14 23.35
GraphCodeBERT 10.86 24.99
CodeGPT 17.71 35.67
REDCODER * 16.00 33.14
CodeT5-small 12.57 25.11
CodeT5-base 15.43 24.53
SKCODER 20.00 (↑ 12.9%) 38.70 (↑ 8.49%)

metrics and are hard to be improved. The significant improve-

ments prove the superiority of our SKCODER in automatic

code generation. (2) The retrieved code is beneficial to code

generation. Our retriever module performs well in the BLEU

and CodeBLEU, but it is poor in the EM and Pass@1.

It validates our motivation that the similar code contains

lots of reusable contents and irrelevant parts. By introducing

the retrieved code, code generation models can be further

improved. For example, on the HearthStone dataset, ReEdit

improves its base model (i.e., RNN) by up to 200%, and

ReCode improves its base model (i.e., TRANX) by up to

20.99%. (3) Our SKCODER outperforms the SOTA copy-based

baselines. The SOTA copy-based baseline is the REDCODER,

which uses multiple similar code snippets to augment code

generation models. While our SKCODER only uses the Top-

1 similar code. Compared to the REDCODER, SKCODER

improves it by 42.86% in EM, 25% in Pass@1, and 16.78% in

AvPassRatio. This is because REDCODER is likely to repeat

the similar code without necessary modifications. While our

SKCODER utilizes a sketcher to extract the relevant content

as a sketch, ignoring irrelevant parts. The sketch is further

edited based on the input description. Thus, our SKCODER

is closer to developers’ code reuse behavior and can generate

more correct programs.

On the HearthStone and Magic datasets, we notice that

the improvements on the EM are higher than those on other

metrics. We carefully compare the output of different models

and find that baselines and our SKCODER all can correctly

generate the body of programs. But baselines often err on

some details, such as parameters. Thus, our SKCODER can

generate more exactly correct programs, and achieve lower

improvements on n-gram similarity metrics (i.e., BLEU and

CodeBLEU). The results also verify that compared to gener-

ating the code from scratch, editing a well-formed sketch is

easier to generate the correct code.

2130

TABLE V
THE RESULTS OF ABLATION STUDY.

Editor Retriever Sketcher
HearthStone Magic AixBench-L

EM BLEU CodeBLEU EM BLEU CodeBLEU Pass@1 AvgPassRate

RNN
3.03 64.53 57.56 16.26 71.96 61.83 4.00 13.33

3.03 (↑ 0%) 68.39 59.12 16.51 (↑ 1.54%) 72.79 63.82 5.14 (↑ 28.5%) 10.61
4.54 (↑ 49.83%) 71.50 61.76 17.91 (↑ 10.15%) 73.72 65.04 8.57 (↑ 114.3%) 13.42 (↑ 2.7%)

CodeT5-small
21.20 77.91 64.60 26.95 78.38 71.11 12.57 25.11

27.86 (↑ 31.42%) 79.84 68.76 31.73 (↑ 17.74%) 80.85 77.10 14.29 (↑ 13.68%) 26.06 (↑ 3.78%)
30.30 (↑ 42.90%) 83.08 69.35 33.89 (↑ 25.75%) 85.15 80.08 18.29 (↑ 45.51%) 34.05 (↑ 35.6%)

CodeT5-base
25.24 81.28 68.42 28.91 80.46 73.11 15.43 24.52

27.81 (↑ 10.18%) 82.06 69.35 32.43 (↑ 12.18%) 83.11 78.97 17.71 (↑ 14.78%) 34.75 (↑ 41.72%)
30.30 (↑ 20.05%) 83.12 70.97 35.39 (↑ 22.41%) 85.39 80.62 20.00 (↑ 29.62%) 38.70 (↑ 57.83%)

Answer to RQ1: SKCODER achieves the best results

among all baselines. In particular, SKCODER generates

30.30%, 35.39%, and 20% correct programs on three

datasets, outperforming the SOTA code generation mod-

els by 17.26%, 22.41%, and 12.9%. The significant

improvements prove our sketch-based approach is more

promising in automatic code generation.

In RQ2, we aim to figure out the contributions of different

modules in our SKCODER. Besides, we plan to investigate

the effectiveness of our approach on different code generation

models.

RQ2: What are the contributions of different modules in
our approach?

Setup. In this RQ, we select three code generation models as

the base editor, including RNN, CodeT5-small, and CodeT5-

base. They cover mainstream network architectures, i.e., RNN,

Transformer, and pre-trained models. For each editor, we

conduct an ablation study by gradually adding the retriever

and sketcher.

Results. The experimental results is shown in Table V.

and represent adding and removing corresponding modules,

respectively. An individual editor is just a vanilla code gener-

ation model that maps an NL description to the source code.

After adding a retriever, the model takes the retrieved code as

an additional input. After further introducing a sketcher, the

model is our sketch-based approach.

Analyses. (1) All three modules are necessary to perform

the best. After adding a retriever, the performance of all mod-

els is improved. For example, on HearthStone, the retriever

brings a 10.18% improvement in the EM for the CodeT5-

base. It validates that the retrieved code contains lots of valu-

able information that benefits code generation models. After

introducing a sketcher, all models obtain better results. For

example, on the HearthStone, the CodeT5-base is improved

by 20.05% in the EM. It proves that compared to copying

from the retrieved code, our sketch-based code generation

approach can better mine the knowledge in the retrieved code.

(2) Our approach is effective to multiple code generation

models. As shown in Table V, our approach supports different

code generation models and brings obvious improvements.

Specifically, in terms of the Pass@1, our approach improves

the RNN by up to 114.3%, the CodeT5-small by 45.31%, and

the CodeT5-base by 29.62%. In the future, our approach can

TABLE VI
THE PERFORMANCE OF DIFFERENT SKETCHERS.

Approach
HearthStone Magic

EM BLEU CodeBLEU EM BLEU CodeBLEU

Without sketcher 27.81 82.06 69.35 32.43 82.01 78.87
Sketcher-1 27.93 (↑ 0.43%) 82.39 70.81 33.06 (↑ 1.94%) 83.04 80.15
Sketcher-2 29.03 (↑ 4.39%) 82.77 70.27 34.46 (↑ 5.95%) 83.91 80.19
Our Sketcher 30.30 (↑ 9.13%) 83.12 70.97 35.39 (↑ 9.13%) 85.39 80.62

check if all elements in list var_0 are identical

all(x == var_0[0] for x in var_0)

all(isinstance(x, int) for x in var_0)

all(isinstance(v_1, int) for v_1 in v_2)

all((x) for x in var_0)

all(<pad> for x in var_0)

Fig. 5. Examples of three sketches.

be used to enhance more powerful code generation models.

Answer to RQ2: All three modules are essential for the

performance of our approach. Besides, our approach is ef-

fective to different code generation models and improves

them by 114.3%, 45.31%, and 29.62% in Pass@1.

Code sketches are not explicitly defined in existing datasets

and how to build a sketch is an open question, Thus, we

design several plausible design choices for the sketcher and

investigate which one is better.

RQ3: What is the better design choice for the code sketch?
Setup. In this RQ, we provide three sketchers (i.e., sketcher-

1, sketcher-2, and our sketcher). The sketcher-1 utilizes a

parse to anonymize the user-defined terms in the similar code

(i.e., string, constant, variable) and obtains a code sketch.

The sketcher-2 trains a neural network to predict overlapping

tokens between the similar code and the ground truth. The

overlapping tokens are collected to build a sketch. Our sketcher

trains a neural network to predict the longest common subse-

quence (LCS) between the similar code and the ground-truth.

The predicted LCS is viewed as a sketch. We present some

examples of different sketchers in Figure 5.

Results. The experimental results are shown in Table VI. We

present the results of our SKCODER with different sketchers

2131

Input description: NAME: Floating Watcher ATK: 4 DEF: 4 COST: 5 DUR: -1 TYPE: Minion PLAYER: Warlock RACE: Demon RARITY: Common DESCRIPTION:
Whenever your hero takes damage on your turn, gain +2/+2.

Retriever (similar code):
class ImpGangBoss(MinionCard):

def __init__(self):
super().__init__("Imp Gang Boss", 3,

CHARACTER_CLASS.WARLOCK, CARD_RARITY.COMMON, minion_type=MINION_TYPE.DEMON)
def create_minion(self, player):

return Minion(2, 4,
effects=[Effect(Damaged(), ActionTag(Summon(Imp()), PlayerSelector()))])

REDCODER:
class FloatingWatcher(MinionCard):

def __init__(self):
super().__init__("Floating Watcher", 5,

CHARACTER_CLASS.WARLOCK, CARD_RARITY.COMMON, minion_type=MINION_TYPE.DEMON)
def create_minion(self, player):

return Minion(4, 4,
effects=[Effect(Damaged(), ActionTag(Summon(Imp()), PlayerSelector()))])

Sketcher (code sketch from similar code):
class <pad> (MinionCard):

def __init__(self):
super().__init__(<pad> , <pad> ,

CHARACTER_CLASS.WARLOCK, CARD_RARITY.COMMON, minion_type=MINION_TYPE.DEMON)
def create_minion(self, player):

return Minion(2, 4,
effects=[Effect(Damaged(), ActionTag(<pad> , <pad>))])

SkCoder (editing the sketch) & Ground-truth:
class FloatingWatcher(MinionCard):

def __init__(self):
super().__init__("Floating Watcher", 5,

CHARACTER_CLASS.WARLOCK, CARD_RARITY.COMMON, minion_type=MINION_TYPE.DEMON)
def create_minion(self, player):

return Minion(4, 4,
effects=[Effect(CharacterDamaged(And(IsHero(), OwnersTurn())),

ActionTag(Give([Buff(ChangeAttack(2)),
Buff(ChangeHealth(2))]), SelfSelector()))])

Fig. 6. Examples of code snippets generated by different models. We highlight the parts that SKCODER modifies on the sketch.

and the result without a sketcher.

Analyses. (1) Introducing a sketcher can better utilize the

retrieved code. Compared to the model without a sketcher,

the models with sketchers perform better. It shows that the

sketcher can better mine the knowledge from the retrieved

code and our sketch-based approach is more promising than

copy-based approaches. (2) Our sketcher performs best among

all baselines. On both datasets, our sketcher brings 2x improve-

ments (e.g., 9.13% vs. 0.43%) over other sketchers. This is

because our sketcher can accurately extract the relevant content

and leave irrelevant details, while other sketchers cannot. As

shown in Figure 5, sketch-1 outputs a sketch by anonymizing

the user-defined terms. But the anonymized code still contains

irrelevant parts (e.g., isinstance) and even loses some

reusable tokens (e.g., var_0). Sketch-2 only keeps tokens

that may occur in the ground truth. It ignores the sequentiality

of tokens, and the generated sketch probably is disorder and

confusing (e.g., (x)). By contrast, the sketch produced by our

sketcher is well-formed and provides a clear code structure.

Answer to RQ3: Code sketches are beneficial to reuse

the knowledge in the retrieved code. Among multiple

plausible sketchers, our sketcher performs best and brings

a maximum of 9.13% improvement in the EM.

VI. HUMAN EVALUATION

The ultimate goal of code generation models is to assist

developers in writing the source code. Thus, in this section,

we conduct a human evaluation to assess our SKCODER.

Setup. Following previous work [24], we manually evaluate

the generated code by different models in three aspects,

including correctness (whether the code satisfies the given

requirement), code quality (whether the code does not contain

bad code smell) and maintainability (whether the implemen-

tation is standardized and has good readability). For each

aspect, the score is integers, ranging from 0 to 2 (from bad

to good). We randomly select 50 test samples and collect

programs generated by 10 models on these samples. Finally,

we obtain 500 programs (50*10) for evaluation. The evaluators

are computer science Ph.D. students and are not co-authors.

They all have programming experience ranging from 3+ years.

The 500 code snippets are divided into 5 groups, with each

TABLE VII
THE RESULTS OF HUMAN EVALUATION. ALL THE P-VALUES ARE

SUBSTANTIALLY SMALLER THAN 0.005.

Approach Correctness Code quality Maintainability

GraphCodeBERT 0.9277 0.9872 1.3049
CodeGPT 0.9798 1.0229 1.3306
REDCODER * 1.0177 1.2038 1.5796
CodeGen 1.1250 1.3610 1.5573
PyCodeGPT 1.1098 1.3661 1.5442
CodeParrot 0.9704 1.0814 1.3668
GPT-Code-Clippy 0.9646 1.0585 1.3672
CERT-PyCodeGPT 0.9629 1.0439 1.3882
CodeT5-base 1.1719 1.3908 1.5848
SKCODER 1.3705 (↑ 16.95%) 1.5639 (↑ 12.45%) 1.7764 (↑ 12.09%)

questionnaire containing one group. We randomly list the code

and the corresponding input description on the questionnaire.

Each group is evaluated anonymously by two evaluators,

and the final score is the average of two evaluators’ scores.

Evaluators are allowed to search the Internet for unfamiliar

concepts.

Results and Analyses. The results of the human evaluation

are shown in Table VII. Our SKCODER is better than all

baselines in three aspects. Specifically, SKCODER outperforms

the SOTA model - CodeT5-base by 16.95% in correctness,

12.45% in code quality, and 12.09% in maintainability. All the

p-values are substantially smaller than 0.005, which shows the

improvements are statistically significant. The improvements

prove the superiority of our SKCODER in assisting developers

in coding. Besides, we notice that the copy-based model -

REDCODER performs well in maintainability but is poor in

correctness and code quality. This is because REDCODER can

generate natural programs by copying from the retrieved code.

But some copied content is irrelevant and leads to incorrect

code.

VII. DISCUSSION

A. Case Study

Figure 6 presents some code snippets generated by dif-

ferent models on the HearthStone dataset. From the exam-

ples, we obtain the following findings. (1) The retrieved

similar code provides a well-formed code structure and con-

tains some irrelevant details (e.g., ImpGangBoss). (2) As

a copy-based approach, REDCODER wrongly repeat the

inappropriate statement (i.e., effects=[Effect(...),

2132

ActionTag(...)]) without modifications. It causes the

generated code is inconsistent with the input description. (3)

Our sketcher accurately keeps the relevant content and replaces

irrelevant details with placeholders. The extracted sketch pro-

vides a clear start-point for editing. (4) Based on the input

description, our SKCODER further edits the sketch into the

desired code. For example, the input description specifies the

card’s effect (i.e., whenever you hero takes damage
on your turn, gain +2/+2). SKCODER modifies the

Damaged() and ActionTag() calls in the sketch and

adds more details (e.g., And(IsHero(), OwersTurn()).

Besides, the editor adds some components that are not in the

sketch, such as Character.

B. Threats to Validity

There are three main threats to the validity of our work.

The generalizability of our experimental results. To

mitigate this threat, we carefully design the experimental

datasets, metrics, and baselines. For the datasets, we follow

previous studies [1], [5], [2] and pick three representative

code generation datasets. The three datasets are collected

from real software projects and communities and cover two

popular programming languages (i.e., Java and Python). For

the metrics, we select five widely used metrics, including the

EM, BLEU, CodeBLEU, Pass@1, and AvgPassRatio. Existing

work [39] has proven the reliability of these metrics. To verify

the superiority of our approach, we select 20 code generation

models as our baselines for the comparison. They cover the

most of representative work in the past six years. Besides, we

run each approach three times and report the average results.

The implementation of models. It is widely known that

deep learning models are sensitive to the implementation de-

tails, including hyper-parameters and network architectures. In

this work, we need to implement baselines and our approach.

For the baselines, we use the source code provided by their

original papers and ensure that the model’s performance is

comparable with their reported results. For our approach, we

implement a version that employs mainstream neural networks

(details in Section IV-E). Due to the high training cost, we do

a small-range grid search on several hyper-parameters (i.e.,
learning rate and batch size), leaving other hyper-parameters

the same as those in previous studies [18], [34], [3]. Thus,

there may be room to tune more hyper-parameters and network

architectures of our approach for more improvements.

The impact of retrieved code. The retrieved code is an

important element in our approach. Intuitively, when the re-

trieved code is less similar to the target code, the performance

of our model may suffer. To address this threat, we have two

thoughts. (1) A large-scale study on 13.2 million real code

files found the proportion of reused code is up to 80% [8].

Therefore, we believe that it is quite possible to retrieve the

similar code in real development scenarios. (2) Even if the

retrieved code is dissimilar to the target code, our SKCODER

can selectively focus on the retrieved code based on current

requirements. To prove this point, we randomly select code

snippets from the retrieval corpus as the retrieved code and

TABLE VIII
THE PERFORMANCE OF SKCODER-RANDOM.

Approach EM BLEU CodeBLEU

CodeT5-base 28.91 80.46 73.11
SKCODER-random 33.48 (↑ 15.81%) 82.07 79.08
SKCODER 35.39 (↑ 22.41%) 85.39 80.62

train a variant named SKCODER-random. The results are

shown in Table VIII. SKCODER-random has a drop compared

to SKCODER but still substantially outperforms CodeT5-base.

It proves that our SKCODER can adaptively extract valuable

content from the retrieved code and has strong robustness.

VIII. RELATED WORK

Code generation aims to generate the source code that

satisfies a given natural language description or requirement.

Existing work can be divided into three categories: sequence-

based models, tree-based models, and pre-trained models.

Sequence-based Models. Sequence-based models treat the

source code as a sequence of tokens and use neural networks

to generate the source code token-by-token based on the input

description. Ling et al. [12] generate the source code with a

structured attention mechanism to process the semi-structural

input. Hashimoto et al. [6] train a task-dependent retriever to

retrieve the similar code, and then use the similar code as

an additional input to the generator. Wei et al. [40] propose a

code generation model based on dual learning, which performs

better with the help of code summarization.

Tree-based Models Program is strictly structured, and can

be parsed into a tree, e.g., Abstract Syntax Tree (AST). Tree-

based models generate a parse tree of the program based

on the NL description and then convert the parse tree into

the corresponding code. Dong et al. [31] generate the AST

by expanding every non-terminal with an LSTM model. Ra-

binovich et al. [32] generate the AST with a decoder that

has a dynamically-determined modular structure paralleling

the structure of the output AST. Yin et al. [1] generate the

tree-construction action sequence with an LSTM model, and

construct the AST from the action sequence. Sun et al. [2]

encode the natural language and grammar rules that have been

generated with specially designed Transformer blocks, and

predict the next grammar rule accordingly.

Pre-trained Models Recent years have witnessed the emer-

gence of pre-trained models. These models are pre-trained

on massive data of source code and then fine-tuned on code

generation task. Pre-trained models can be divided into three

categories.

(1) Encoder-only pre-trained models only contains an en-

coder and is mainly used in code representation. They are

usually pre-trained with language comprehension tasks, e.g.,
masked language modeling or replaced token detection. The

recently proposed encoder-only pre-trained models include the

CodeBERT [33], GraphCodeBERT [34], etc. (2) Decoder-only
pre-trained models are pre-trained to predict the next token

based on the input context. GPT series [41] are excellent

decoder-only models for natural language processing, and

2133

there are many efforts to adapt similar ideas to code. Lu et al.

[35] adapt GPT-2 [36] model on the source code, resulting in

CodeGPT. Chen et al. [42] fine-tune GPT-3 [43] models on

the code to produce CodeX and GitHub Copilot [44]. Neither

CodeX nor GitHub Copilot is open-sourced, which leads to

several attempts to replicate CodeX in industry and academia,

resulting in CodeParrot [27], GPT-CC [28], PyCodeGPT [26],

and CodeGen [38]. CodeParrot and CodeGen are trained from

scratch. PyCodeGPT and GPT-CC are fine-tuned from GPT-

Neo[37]. Zan et al. [26] propose a variant of PyCodeGPT.

They first generate a sketch that anonymizes user-defined

constants, and then generate the complete program from the

NL and the sketch. (3) Encoder-decoder pre-trained models
are composed of an encoder and a decoder. They can support

both code representation and code generation tasks. Various

successful encoder-decoder architecture in natural language

processing has been transferred into the source code, resulting

in powerful models, e.g., CodeT5 [3] and PLBART [45].

Inspired the code reuse, some studies introduce the similar

code to augment code generation models. Hayati et al. [5]

retrieve the similar code with the input, and copy n-gram

actions from the similar code during decoding. Hashimoto et

al. [6] and Parvez et al. [7] retrieve similar code snippets and

feed them along with the input description to a generator. They

train the generator to learn to copy some reusable content

from the similar code. We refer to these studies as copy-

oriented approaches. Different from copy-oriented approaches,

our sketch-oriented SKCODER mimics the developers’ code

reuse behavior, extracts content that is relevant to input re-

quirement and ignores irrelevant parts in the similar code. The

extracted content is viewed as a code sketch and further edited

to the target code with guidance of input requirement.

IX. CONCLUSION AND FUTURE WORK

During software development, human developers often

reuse similar code snippets. In this paper, we propose a novel

sketch-based code generation approach named SKCODER

to mimic developers’ code reuse behavior. Different from

previous copy-based approaches, SKCODER can extract the

relevant content from the retrieved similar code and builds

a code sketch. The sketch is further edited by adding more

requirement-specific details. We conduct experiments on two

public code generation datasets and a new Java dataset col-

lected by this work. The new dataset contains 200k NL-code

pairs and each test sample is equipped with a set of unit tests.

Experimental results show that SKCODER substantially out-

performs state-of-the-art baselines. The ablation study proves

the effectiveness of code sketches and our approach is effective

to different neural networks. In the future, we will explore

more effective sketchers and apply our sketch-based idea to

large-scale pre-trained models.

ACKNOWLEDGMENTS

This research is supported by the National Key R&D Pro-

gram under Grant No. 2021ZD0110303, the National Natural

Science Foundation of China under Grant Nos. 62192731,

61751210, 62072007, 62192733, 61832009, and 62192730.

REFERENCES

[1] P. Yin and G. Neubig, “Tranx: A transition-based neural abstract syntax
parser for semantic parsing and code generation,” in Proceedings of
the Conference on Empirical Methods in Natural Language Processing
(Demo Track), 2018.

[2] Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang, “Treegen: A
tree-based transformer architecture for code generation,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, 2020,
pp. 8984–8991.

[3] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, pp. 8696–8708.

[4] S. Haefliger, G. Von Krogh, and S. Spaeth, “Code reuse in open source
software,” Management science, vol. 54, no. 1, pp. 180–193, 2008.

[5] S. A. Hayati, R. Olivier, P. Avvaru, P. Yin, A. Tomasic, and G. Neubig,
“Retrieval-based neural code generation,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing,
2018.

[6] T. B. Hashimoto, K. Guu, Y. Oren, and P. S. Liang, “A retrieve-and-
edit framework for predicting structured outputs,” Advances in Neural
Information Processing Systems, vol. 31, 2018.

[7] M. R. Parvez, W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang,
“Retrieval augmented code generation and summarization,” in Findings
of the Association for Computational Linguistics: EMNLP 2021, 2021,
pp. 2719–2734.

[8] A. Mockus, “Large-scale code reuse in open source software,” in First
International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS’07: ICSE Workshops 2007). IEEE, 2007, pp.
7–7.

[9] [Online]. Available: https://stackoverflow.com/
[10] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang, “Mining

succinct and high-coverage api usage patterns from source code,” in
2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE, 2013, pp. 319–328.

[11] H. Niu, I. Keivanloo, and Y. Zou, “Api usage pattern recommendation
for software development,” Journal of Systems and Software, vol. 129,
pp. 127–139, 2017.

[12] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann, T. Kočiskỳ,
F. Wang, and A. Senior, “Latent predictor networks for code generation,”
in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2016, pp. 599–609.

[13] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[14] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “Codebleu: a method for automatic
evaluation of code synthesis,” arXiv preprint arXiv:2009.10297, 2020.

[15] [Online]. Available: https://github.com/LJ2lijia/SkCoder
[16] S. Robertson, H. Zaragoza et al., “The probabilistic relevance frame-

work: Bm25 and beyond,” Foundations and Trends® in Information
Retrieval, vol. 3, no. 4, pp. 333–389, 2009.

[17] B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine:
exemplar-based neural comment generation,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2020, pp. 349–360.

[18] J. Li, Y. Li, G. Li, X. Hu, X. Xia, and Z. Jin, “Editsum: A retrieve-
and-edit framework for source code summarization,” in 2021 36th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2021, pp. 155–166.

[19] S. Lu, N. Duan, H. Han, D. Guo, S.-w. Hwang, and A. Svyatkovskiy,
“Reacc: A retrieval-augmented code completion framework,” in Pro-
ceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 2022, pp. 6227–6240.

[20] [Online]. Available: https://lucene.apache.or
[21] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM

40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 933–944.

2134

[22] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 964–974.

[23] R. A. Wagner and M. J. Fischer, “The string-to-string correction prob-
lem,” Journal of the ACM (JACM), vol. 21, no. 1, pp. 168–173, 1974.

[24] Y. Hao, G. Li, Y. Liu, X. Miao, H. Zong, S. Jiang, Y. Liu, and
H. Wei, “Aixbench: A code generation benchmark dataset,” arXiv
preprint arXiv:2206.13179, 2022.

[25] [Online]. Available: https://github.com/
[26] D. Zan, B. Chen, D. Yang, Z. Lin, M. Kim, B. Guan, Y. Wang, W. Chen,

and J.-G. Lou, “Cert: Continual pre-training on sketches for library-
oriented code generation,” in Proceedings of the 31-th International Joint
Conference on Artificial Intelli-gence (IJCAI 2022).

[27] [Online]. Available: https://huggingface.co/codeparrot/codeparrot
[28] [Online]. Available: https://github.com/CodedotAl/gpt-code-clippy
[29] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network

regularization,” arXiv preprint arXiv:1409.2329, 2014.
[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[31] L. Dong and M. Lapata, “Language to logical form with neural at-
tention,” in 54th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics (ACL), 2016,
pp. 33–43.

[32] M. Rabinovich, M. Stern, and D. Klein, “Abstract syntax networks
for code generation and semantic parsing,” in Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2017, pp. 1139–1149.

[33] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536–1547.

[34] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, L. Shujie, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training

code representations with data flow,” in International Conference on
Learning Representations, 2020.

[35] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,”
in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021.

[36] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskeveret al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[37] S. Black, L. Gao, P. Wang, C. Leahy, and S. Biderman, “Gpt-neo: Large
scale autoregressive language modeling with mesh-tensorflow, march
2021,” URL https://doi. org/10.5281/zenodo, vol. 5297715.

[38] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “A conversational paradigm for program synthesis,”arXiv
preprint arXiv:2203.13474, 2022.

[39] M. Evtikhiev, E. Bogomolov, Y. Sokolov, and T. Bryksin, “Out of the
bleu: how should we assess quality of the code generation models?”
arXiv preprint arXiv:2208.03133, 2022.

[40] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, “Code generation as a dual
task of code summarization,” Advances in neural information processing
systems, vol. 32, 2019.

[41] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[42] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[43] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[44] [Online]. Available: https://github.com/features/copilot
[45] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified

pre-training for program understanding and generation,” arXiv preprint
arXiv:2103.06333, 2021.

2135

